Stat 588 — Fall 2007
Data Mining

Lecture 9: Boosting



Improving Decision Tree Performance

e Improve accuracy through tree ensembile:

— boosting
— bagging

* generate bootstrap samples.

* train one tree per bootstrap sample.

+ take unweighted average of the trees.
— random forest

x bagging with additional randomization.



Ensemble Learning

Given m classifiers f1,..., f,, obtained using multiple learning algorithm.

Ensemble is a combined classifier of the form:
- f(z) =221 wifi(w).
How to build f; and w; simultaneously.

Example: boosting (other methods: voting, bagging, etc).



Boosting

e Given a learning algorithm A, how to generate ensemble?

e Invoke A with multiple samples (similar to Bagging).

— goal: to find optimal ensemble by minimizing a loss function
— learning method:

x greedy, stage-wise optimization

* invoking a base-learner (weak learner) A.

+ adaptive resampling

e Bias reduction:

— less stable but more expressive.
— better than any single classifier.



Why boosted trees

e Build shallow trees

— combine shallow trees (weak learner) to get strong learner.

e Linear model of high order features

— automatically find high order interactive features
— automatically handle heterogeneous features
— high order features are indicator functions.

e Alternatives:

— discretize each feature into (possibly overlapping) buckets
— direct construction of feature combination.



— nonlinear functions like kernels or neural networks.
— direct greedy learning.



Weak learning and adaptive resampling

e A: aweak learner (e.g. shallow tree)

— better than chance (0.5 error) on any (reweighted) training data.
e Question: can we combine weak learners to obtain a strong learner?

e Answer: yes, through adaptive resampling (boosting).

— idea: overweighting difficult examples that are hard to classify.

e Compare with bagging: sampling without overweighting errors.



The idea of adaptive resampling

Reweight the training data to overweight difficult examples.

Using weak learner A to obtain classifiers f; on reweighted samples.
Adding the new classifier into ensemble, and choose weight w;.
lterate.

Final classifier is } _; w; f;.



AdaBoost (adaptive boosting)

e How to reweight, and how to compute w.

e Assume binary classification y € {£1}, and f € {+1}.

Table 1: AdaBoost

initialize sample weights {d,;} = {1/n} for {(X;,Y;)}
for; =1,---,J
call Weak Learner to obtain f; using sample weighted by {d;}
letr; = >, dif;(X;)Y;
let w; = 0.5In((1+7;)/(1 —r;))
update d;: d; oc d;e”wifi(XdYi,

let f(x) = > w; f;(=)




Some theoretical results about AdaBoost

e Convergence:

— reduces margin error:
x f correctly classifies X; with margin v if f(X;)Y; > v > 0.
+ If each weak learner f; does better than 0.5 — 4, (6, > 0) on reweighted
samples with respect to classification error I(f(X;)Y; < 0), then

—ZI X,)Y; <) < exp(y —2252

71=1

e Generalization: large margin implies good generalization performance.

— for separable problems, Adaboost does not usually maximize margin.



Generalization analysis

e Generalization performance of f = A(S,): with probability at least 1 — 7,

test error < training error + model complexity.

e Decision tree of fixed depth: H has finite VC-dimension dyc, (¢(f,y) =

I(fy <0)):

o 1
test error < training error + C\/—(dvc —In(n))
n

- C
test error < 2 x training error + —(dy ¢ — In(n)).
n
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Generalization error of boosting using number of steps

e H: VC-dimension dyc.

e Ensemble f; =327 wifi(x): f; € H}:

- C
test error < 2 x training error + E(Jdvc —In(n)).

\ 4

complexitﬁnear in J

e f;: boosted tree after .J round:

— training error: 0(6_2‘]52) (0.5 — 0 error reduction)
— generalization error

R(fy) < 0(e™) + (Jdye — In(n)).
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Generalization error anomaly

Observations:

— AdaBoost is difficult to overfit.
— even when training error becomes zero, generalization error still decays

Not explained by the generalization bound using the number of steps.

require additional analysis: margin
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Margin bound

e Decision tree of fixed depth: H has finite VC-dimension dy ¢, then

training error < 2 x margin error + complexity

7

ExyI(f;(X)Y <0) < %;I(fm( )Y < ’YZ‘UJJ ’Y *dvc —1In(n)).

mdependent of J

—0 when J—00

e Explains why AdaBoost can keep improving even when classification error
becomes zero

— margin error decreases
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Margin analysis and 1-norm regularization

e Margin analysis is a special case of general 1-norm regularization
e Let ¢ be a smooth loss.

e Given 1-norm constraint ) |, w; < A:

Exyo(fs ) <~ Z (f. ) + Cqb\/%(Azdvc — In(n)).

Complexity measured by A, not number of steps J.
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Summary of Generalization Analysis

e Estimate generalization of boosting: using the following complexity control
— Ly: 1-norm of the weights w; are bounded.
— Lo: number of boosting steps (sparse representation).
e Which complexity control is better?
— sparsity is more fundamental but both views are useful.
— can be more refined analysis in between.
¢ In more general boosting methods:

— complexity can be controlled either by L, (1-norm) or Ly (sparsity).
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Issues corresponding to the weak learner view

Weak learner: this is only an assumption, how can we prove it exists.

— what is a weak learner anyway: why boosted tree works, and boosted
SVM does not.

Overfitting: driving error to zero can overfit the data (for non-separable
problems)

AdaBoost does not maximize margin.
Adaptive resampling: why this specific form.

Can we generalize adaptive resampling idea to regression and complex loss
functions?
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From adaptive resampling to greedy boosting

o Weak learner: picks f; from a hypothesis space H; to minimize certain error
criterion.

e Goal: find w; > 0 and f; € H; to minimize loss
iy, f;}) =arg  min }qu (Z w; f5(X ) o

e Idea: greedy optimization.

— at stage j: fix (wg, fx) (k < 7), find (w;, f;) to minimize the loss (x).
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AdaBoost as greedy boosting

o Loss ¢(f,y) = exp(—fy).

e Goal: using greedy boosting to minimize

(i, fiH =arg min 37 em =l 0N,

{w;>0,f;€H;} —

o Atstage 7, let d; oc e~ =k<i UeI(X)Yi gnd solve

n

(W, f;] =arg  min g d;e=wili(Xi)Yi,
w;>0,f;€H; “ "
1=
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Let f(z) = 3, Wi fr().

Solution of 1; with fixed f;:

D (f)=0-r)/2=3. #,(xy)vi=—1 di (classification error):

@ =0.5In((1 — D_1)/D_y), Y de” %Y= 2\ /(1—D_)D_;
=1

Optimal f: classifier minimizing error with reweighted samples d;.

Stage-wise exponential loss minimization (AdaBoost procedure):

— choose f, € H; to minimize classification error
— letw; =0.5In((1 — D_1)/D_1)
— exactly leads to the AdaBoost procedure.
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General Loss Function

e Learn prediction function h(x): input x and output y
e By solving learning formulation

h = arg hmellr} R(h)

— R(h): complex loss function of the form

Zsz Zl?zl 3 (xzmz)ayz)

e Greedy algorithm: generalization of Adaboost
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— (8K, 9x) = argmingec,ser R(hi + s9)
- hk_|_1 — hi + Sigx (§k may not equal Sk)
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Why boosted tree works

Linear model of high order features

Automatically handle heterogeneous features

— create new (high order) features that are indicator functions.

Automatically find high order interactive features

— through tree splitting procedure.
— a method to solve the problem of huge search space.

* assume good high order features depend on actively maintained set of

(good) features constructed so far.

Alternatives:
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— discretize each feature into (possibly overlapping) buckets

— direct construction of feature combination.

— nonlinear functions like kernels or neural networks.

— general greedy feature learning by maintaining a set of features and
adding new ones.
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Greedy Boosting in Convex Hull

Solving the optimization problem: inf;.co(s) A(f), where CO(S) is the
convex hull of S.

The algorithm:

e Start with fy € S.

o fork=1,2,...

— Find g, € S and 0 < a; < 1 to approximately minimize the function:

(ar, gx) — A((1 — ar) fre—1 + argr) (*)
— Let fr, = (1 — aw) fu—1 + arge.

(x) step (weak-learning): A((1—ay) fr—1+0kgr) <inf, o A((1—a) fr—1+ag).
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One-step analysis

Goal: obtain upper bound of

AT(v)= inf A((1 —n)v+nu).

n€l0,1],uesS

Averaging technique:

— Consider an arbitrary w = Y | au; € CO(S)
* oy > 0and Z:-il(){i: 1, u; € 8.

— Design the following rule parameterized by n € [0, 1]:

B(n) =) aiA((1 —n)v + nu).

1=1

Observe: A*(v) <inf,, B(n)
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Intuition

Given w = >_"" , a;u; € CO(S). First order approximation:

AT (v)

| /\

B(n)
Z v+ nu;)
2

il A(v) =V A®W)" (v = u)] + O(n°)

A(v) =nVA(@)" (v—w) + 0%
A(v) = n(A(v) — A(w)) + O (7).

)
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Some Observations

e Minimize r.h.s over w € CO(S5):

A*(0) S A() —n(A@) — it A(w) +00?)
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More precise derivation

e Some technical tools

— Convexity property: A(w) — A(v) — VA(v)T (w — v) > 0.

— Taylor expansion: A((1 —n)v +nv') — A(v) < n(v' —v)TVAW) + ";M.

e Assumption: M = sup,cco(s),

d2
uweS,0€(0,1) g2

Alv+0(u —v)) < +o0.
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Optimize the one-step convergence bound

Vw € co(S)and n € [0, 1]:

2

Alfis1) = Alw) SA(fi) = Alw) = n(A(fr) = A(w)) + T-M.

Let A(w) — inf,,cco(s) A(w), and define

p(v) = A(v) — we%ncf;(s) A(w).

Optimize over n € [0, 1]:

(fr)?
o(fera) < {;A;(fk) ~ P it a(fi) < M,

5 otherwise.
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Convergence rate

e Recursion of b(k) = p(fx): b(k + 1) < b(k) — b(k)?/(2M).

e Asymptotic expression:

— V' (k) = —b(k)*/(2M)
— 1/b(k) ~ k/(2M) + ¢

e The solution:

— Plug-in the asymptotic form, and use induction.
— After one-step: A(f;) < M/2.
— After k£ > 1 step:

A(fk) < 2M/(k + 3).

30



References

e AdaBoost

Y. Freund and R. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. J. Comput. Syst. Sci., 55(1):119—
139, 1997.

e Convex hull boosting analysis:

T. Zhang. Sequential greedy approximation for certain convex optimization
problems. |IEEE Transaction on Information Theory, 49:682—-691, 2003.

e Greedy boosting:

T. Zhang and B. Yu. Boosting with early stopping: Convergence and
consistency. The Annals of Statistics, 33:1538—1579, 2005.

31



