
Stat 588 – Fall 2007
Data Mining

Lecture 9: Boosting



Improving Decision Tree Performance

• Improve accuracy through tree ensemble:

– boosting
– bagging
∗ generate bootstrap samples.
∗ train one tree per bootstrap sample.
∗ take unweighted average of the trees.

– random forest
∗ bagging with additional randomization.

1



Ensemble Learning

• Given m classifiers f1, . . . , fm obtained using multiple learning algorithm.

• Ensemble is a combined classifier of the form:

– f(x) =
∑m

j=1 wjfj(x).

• How to build fj and wj simultaneously.

• Example: boosting (other methods: voting, bagging, etc).

2



Boosting

• Given a learning algorithm A, how to generate ensemble?

• Invoke A with multiple samples (similar to Bagging).

– goal: to find optimal ensemble by minimizing a loss function
– learning method:
∗ greedy, stage-wise optimization
∗ invoking a base-learner (weak learner) A.
∗ adaptive resampling

• Bias reduction:

– less stable but more expressive.
– better than any single classifier.

3



Why boosted trees

• Build shallow trees

– combine shallow trees (weak learner) to get strong learner.

• Linear model of high order features

– automatically find high order interactive features
– automatically handle heterogeneous features
– high order features are indicator functions.

• Alternatives:

– discretize each feature into (possibly overlapping) buckets
– direct construction of feature combination.

4



– nonlinear functions like kernels or neural networks.
– direct greedy learning.

5



Weak learning and adaptive resampling

• A: a weak learner (e.g. shallow tree)

– better than chance (0.5 error) on any (reweighted) training data.

• Question: can we combine weak learners to obtain a strong learner?

• Answer: yes, through adaptive resampling (boosting).

– idea: overweighting difficult examples that are hard to classify.

• Compare with bagging: sampling without overweighting errors.

6



The idea of adaptive resampling

• Reweight the training data to overweight difficult examples.

• Using weak learner A to obtain classifiers fj on reweighted samples.

• Adding the new classifier into ensemble, and choose weight wj.

• Iterate.

• Final classifier is
∑

j wjfj.

7



AdaBoost (adaptive boosting)

• How to reweight, and how to compute w.

• Assume binary classification y ∈ {±1}, and f ∈ {±1}.

Table 1: AdaBoost

initialize sample weights {di} = {1/n} for {(Xi, Yi)}
for j = 1, · · · , J

call Weak Learner to obtain fj using sample weighted by {di}
let rj =

∑
i difj(Xi)Yi

let wj = 0.5 ln((1 + rj)/(1− rj))
update di: di ∝ die

−wjfj(Xi)Yi.
let f̄J(x) =

∑J
j=1 wjfj(x)

8



Some theoretical results about AdaBoost

• Convergence:

– reduces margin error:
∗ f correctly classifies Xi with margin γ if f(Xi)Yi > γ > 0.
∗ If each weak learner fj does better than 0.5− δj (δj > 0) on reweighted

samples with respect to classification error I(f(Xi)Yi ≤ 0), then

1
n

n∑
i=1

I(f̄J(Xi)Yi ≤ γ) ≤ exp(γ − 2
J∑

j=1

δ2
j ).

• Generalization: large margin implies good generalization performance.

– for separable problems, Adaboost does not usually maximize margin.

9



Generalization analysis

• Generalization performance of f̂ = A(Sn): with probability at least 1− η,

test error ≤ training error + model complexity.

• Decision tree of fixed depth: H has finite VC-dimension dV C, (φ(f, y) =
I(fy ≤ 0)):

test error ≤ training error + C

√
1
n
(dV C − ln(η))

test error ≤ 2× training error +
C

n
(dV C − ln(η)).

10



Generalization error of boosting using number of steps

• H: VC-dimension dV C.

• Ensemble f̄J =
∑J

i=1 wifi(x) : fi ∈ H}:

test error ≤ 2× training error +
C

n
(JdV C − ln(η))︸ ︷︷ ︸

complexity linear in J

.

• f̄J : boosted tree after J round:

– training error: O(e−2Jδ2
) (0.5− δ error reduction)

– generalization error

R(f̄J) ≤ O(e−Jγ) +
C

n
(JdV C − ln(η)).

11



Generalization error anomaly

• Observations:

– AdaBoost is difficult to overfit.
– even when training error becomes zero, generalization error still decays

• Not explained by the generalization bound using the number of steps.

• require additional analysis: margin

12



Margin bound

• Decision tree of fixed depth: H has finite VC-dimension dV C, then

training error ≤ 2×margin error + complexity

EX,Y I(f̄J(X)Y ≤ 0) ≤ 2
n

n∑
i=1

I(f̂m(Xi)Yi ≤ γ

J∑
j=1

wj)︸ ︷︷ ︸
→0 when J→∞

+
C

n
(γ−2dV C − ln(η))︸ ︷︷ ︸

independent of J

.

• Explains why AdaBoost can keep improving even when classification error
becomes zero

– margin error decreases

13



Margin analysis and 1-norm regularization

• Margin analysis is a special case of general 1-norm regularization

• Let φ be a smooth loss.

• Given 1-norm constraint
∑

j wj ≤ A:

EX,Y φ(f̄J(X), Y ) ≤ 1
n

n∑
i=1

φ(f̄J(Xi), Yi) + Cφ

√
1
n
(A2dV C − ln(η)).

Complexity measured by A, not number of steps J .

14



Summary of Generalization Analysis

• Estimate generalization of boosting: using the following complexity control

– L1: 1-norm of the weights wj are bounded.
– L0: number of boosting steps (sparse representation).

• Which complexity control is better?

– sparsity is more fundamental but both views are useful.
– can be more refined analysis in between.

• In more general boosting methods:

– complexity can be controlled either by L1 (1-norm) or L0 (sparsity).

15



Issues corresponding to the weak learner view

• Weak learner: this is only an assumption, how can we prove it exists.

– what is a weak learner anyway: why boosted tree works, and boosted
SVM does not.

• Overfitting: driving error to zero can overfit the data (for non-separable
problems)

• AdaBoost does not maximize margin.

• Adaptive resampling: why this specific form.

• Can we generalize adaptive resampling idea to regression and complex loss
functions?

16



From adaptive resampling to greedy boosting

• Weak learner: picks fj from a hypothesis spaceHj to minimize certain error
criterion.

• Goal: find wj ≥ 0 and fj ∈ Hj to minimize loss

[{ŵj, f̂j}] = arg min
{wj≥0,fj∈Hj}

n∑
i=1

φ

∑
j

wjfj(Xi), Yi

 . (∗)

• Idea: greedy optimization.

– at stage j: fix (wk, fk) (k < j), find (wj, fj) to minimize the loss (∗).

17



AdaBoost as greedy boosting

• Loss φ(f, y) = exp(−fy).

• Goal: using greedy boosting to minimize

[{ŵj, f̂j}] = arg min
{wj≥0,fj∈Hj}

n∑
i=1

e−
P

j wjfj(Xi)Yi.

• At stage j, let di ∝ e−
P

k<j ŵkf̂k(Xi)Yi, and solve

[ŵj, f̂j] = arg min
wj≥0,fj∈Hj

n∑
i=1

die
−wjfj(Xi)Yi.

18



• Let f̄(x) =
∑

k ŵkf̂k(x).

• Solution of ŵj with fixed f̂j:

D−1(f̂j) = (1− rj)/2 =
∑

i:f̂j(Xi)Yi=−1 di (classification error):

ŵj = 0.5 ln((1−D−1)/D−1),
n∑

i=1

die
−ŵjf̂j(Xi)Yi = 2

√
(1−D−1)D−1

• Optimal f̂ : classifier minimizing error with reweighted samples di.

• Stage-wise exponential loss minimization (AdaBoost procedure):

– choose f̂j ∈ Hj to minimize classification error
– let ŵj = 0.5 ln((1−D−1)/D−1)
– exactly leads to the AdaBoost procedure.

19



General Loss Function

• Learn prediction function h(x): input x and output y

• By solving learning formulation

ĥ = arg min
h∈H

R(h)

– R(h): complex loss function of the form

h =
1
n

n∑
i=1

φi(h(xi,1), · · · , h(xi,mi
), yi)

• Greedy algorithm: generalization of Adaboost

20



– (sk, gk) = arg ming∈C,s∈R R(hk + sg)
– hk+1 ← hk + s̃kgk (s̃k may not equal sk)

21



Why boosted tree works

• Linear model of high order features

• Automatically handle heterogeneous features

– create new (high order) features that are indicator functions.

• Automatically find high order interactive features

– through tree splitting procedure.
– a method to solve the problem of huge search space.
∗ assume good high order features depend on actively maintained set of

(good) features constructed so far.

• Alternatives:

22



– discretize each feature into (possibly overlapping) buckets
– direct construction of feature combination.
– nonlinear functions like kernels or neural networks.
– general greedy feature learning by maintaining a set of features and

adding new ones.

23



Greedy Boosting in Convex Hull

Solving the optimization problem: inff∈CO(S) A(f), where CO(S) is the
convex hull of S.

The algorithm:

• Start with f0 ∈ S.

• for k = 1, 2, . . .

– Find ḡk ∈ S and 0 ≤ ᾱk ≤ 1 to approximately minimize the function:
(αk, gk)→ A((1− αk)fk−1 + αkgk) (∗)

– Let fk = (1− ᾱk)fk−1 + ᾱkḡk.

(∗) step (weak-learning): A((1−ᾱk)fk−1+ᾱkḡk) ≤ infg,α A((1−α)fk−1+αg).

24



One-step analysis

• Goal: obtain upper bound of

A
+
(v) = inf

η∈[0,1],u∈S
A((1− η)v + ηu).

• Averaging technique:

– Consider an arbitrary w =
∑m

i=1 αiui ∈ CO(S)
∗ αi ≥ 0 and

∑m
i=1 αi = 1, ui ∈ S.

– Design the following rule parameterized by η ∈ [0, 1]:

B(η) =
m∑

i=1

αiA((1− η)v + ηui).

• Observe: A+(v) ≤ infv,η B(η)

25



Intuition

Given w =
∑m

i=1 αiui ∈ CO(S). First order approximation:

A+(v) ≤B(η)

=
m∑

i=1

αiA((1− η)v + ηui)

=
m∑

i=1

αi[A(v)− η∇A(v)T (v − ui)] + O(η2)

=A(v)− η∇A(v)T (v − w) + O(η2)

=A(v)− η(A(v)−A(w)) + O(η2).

26



Some Observations

• Minimize r.h.s over w ∈ CO(S):

A+(v) ≤ A(v)− η(A(v)− inf
w∈CO(S)

A(w)) + O(η2).

27



More precise derivation

• Some technical tools

– Convexity property: A(w)−A(v)−∇A(v)T (w − v) ≥ 0.
– Taylor expansion: A((1− η)v + ηv′)−A(v) ≤ η(v′ − v)T∇A(v) + η2

2 M .

• Assumption: M = supv∈CO(S),u∈S,θ∈(0,1)
d2

dθ2A(v + θ(u− v)) < +∞.

B(η) ≤A(v)− η∇A(v)T (v − w) +
η2

2
M

≤A(v)− η(A(v)−A(w)) +
η2

2
M.

28



Optimize the one-step convergence bound

∀w ∈ CO(S) and η ∈ [0, 1]:

A(fk+1)−A(w) ≤A(fk)−A(w)− η(A(fk)−A(w)) +
η2

2
M.

Let A(w)→ infw∈CO(S) A(w), and define

ρ(v) = A(v)− inf
w∈CO(S)

A(w).

Optimize over η ∈ [0, 1]:

ρ(fk+1) ≤
{

ρ(fk) − ρ(fk)2

2M
if ρ(fk) ≤ M,

M
2 otherwise.

29



Convergence rate

• Recursion of b(k) = ρ(fk): b(k + 1) ≤ b(k) − b(k)2/(2M).

• Asymptotic expression:

– b′(k) ≈ −b(k)2/(2M)
– 1/b(k) ≈ k/(2M) + c0

• The solution:

– Plug-in the asymptotic form, and use induction.
– After one-step: A(f1) ≤M/2.
– After k ≥ 1 step:

A(fk) ≤ 2M/(k + 3).

30



References

• AdaBoost

Y. Freund and R. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. J. Comput. Syst. Sci., 55(1):119–
139, 1997.

• Convex hull boosting analysis:

T. Zhang. Sequential greedy approximation for certain convex optimization
problems. IEEE Transaction on Information Theory, 49:682–691, 2003.

• Greedy boosting:

T. Zhang and B. Yu. Boosting with early stopping: Convergence and
consistency. The Annals of Statistics, 33:1538–1579, 2005.

31


