Stat 588 – Fall 2007 Data Mining

Lecture 9: Boosting

Improving Decision Tree Performance

- Improve accuracy through tree ensemble:
 - boosting
 - bagging
 - * generate bootstrap samples.
 - * train one tree per bootstrap sample.
 - * take unweighted average of the trees.
 - random forest
 - * bagging with additional randomization.

Ensemble Learning

- Given m classifiers f_1, \ldots, f_m obtained using multiple learning algorithm.
- Ensemble is a combined classifier of the form:

- $f(x) = \sum_{j=1}^{m} w_j f_j(x)$.

- How to build f_j and w_j simultaneously.
- Example: boosting (other methods: voting, bagging, etc).

Boosting

- Given a learning algorithm A, how to generate ensemble?
- Invoke \mathcal{A} with multiple samples (similar to Bagging).
 - goal: to find optimal ensemble by minimizing a loss function
 - learning method:
 - * greedy, stage-wise optimization
 - * invoking a base-learner (weak learner) \mathcal{A} .
 - * adaptive resampling
- Bias reduction:
 - less stable but more expressive.
 - better than any single classifier.

Why boosted trees

- Build shallow trees
 - combine shallow trees (weak learner) to get strong learner.
- Linear model of high order features
 - automatically find high order interactive features
 - automatically handle heterogeneous features
 - high order features are indicator functions.
- Alternatives:
 - discretize each feature into (possibly overlapping) buckets
 - direct construction of feature combination.

- nonlinear functions like kernels or neural networks.
- direct greedy learning.

Weak learning and adaptive resampling

- *A*: a weak learner (e.g. shallow tree)
 - better than chance (0.5 error) on any (reweighted) training data.
- Question: can we combine weak learners to obtain a strong learner?
- Answer: yes, through adaptive resampling (boosting).
 - idea: overweighting difficult examples that are hard to classify.
- Compare with bagging: sampling without overweighting errors.

The idea of adaptive resampling

- Reweight the training data to overweight difficult examples.
- Using weak learner \mathcal{A} to obtain classifiers f_j on reweighted samples.
- Adding the new classifier into ensemble, and choose weight w_j .
- Iterate.
- Final classifier is $\sum_j w_j f_j$.

AdaBoost (adaptive boosting)

- How to reweight, and how to compute w.
- Assume binary classification $y \in \{\pm 1\}$, and $f \in \{\pm 1\}$.

Table 1: AdaBoost initialize sample weights $\{d_i\} = \{1/n\}$ for $\{(X_i, Y_i)\}$ for $j = 1, \dots, J$ call Weak Learner to obtain f_j using sample weighted by $\{d_i\}$ let $r_j = \sum_i d_i f_j(X_i) Y_i$ let $w_j = 0.5 \ln((1 + r_j)/(1 - r_j))$ update d_i : $d_i \propto d_i e^{-w_j f_j(X_i) Y_i}$. let $\bar{f}_J(x) = \sum_{j=1}^J w_j f_j(x)$

Some theoretical results about AdaBoost

• Convergence:

- reduces margin error:
 - * f correctly classifies X_i with margin γ if $f(X_i)Y_i > \gamma > 0$.
 - * If each weak learner f_j does better than $0.5 \delta_j$ ($\delta_j > 0$) on reweighted samples with respect to classification error $I(f(X_i)Y_i \le 0)$, then

$$\frac{1}{n}\sum_{i=1}^{n}I(\bar{f}_J(X_i)Y_i \le \gamma) \le \exp(\gamma - 2\sum_{j=1}^{J}\delta_j^2).$$

- Generalization: large margin implies good generalization performance.
 - for separable problems, Adaboost does not usually maximize margin.

Generalization analysis

• Generalization performance of $\hat{f} = \mathcal{A}(S_n)$: with probability at least $1 - \eta$,

test error \leq training error + model complexity.

• Decision tree of fixed depth: \mathcal{H} has finite VC-dimension d_{VC} , ($\phi(f, y) = I(fy \leq 0)$):

test error
$$\leq$$
 training error $+ C\sqrt{\frac{1}{n}(d_{VC} - \ln(\eta))}$

test error
$$\leq 2 \times$$
 training error $+ \frac{C}{n}(d_{VC} - \ln(\eta)).$

Generalization error of boosting using number of steps

- \mathcal{H} : VC-dimension d_{VC} .
- Ensemble $\overline{f}_J = \sum_{i=1}^J w_i f_i(x) : f_i \in \mathcal{H}$ }:

test error
$$\leq 2 \times$$
 training error $+ \underbrace{\frac{C}{n}(Jd_{VC} - \ln(\eta))}_{\text{complexity linear in }J}$.

- \bar{f}_J : boosted tree after *J* round:
 - training error: $O(e^{-2J\delta^2})$ (0.5 δ error reduction)
 - generalization error

$$R(\bar{f}_J) \le O(e^{-J\gamma}) + \frac{C}{n}(Jd_{VC} - \ln(\eta)).$$

Generalization error anomaly

- Observations:
 - AdaBoost is difficult to overfit.
 - even when training error becomes zero, generalization error still decays
- Not explained by the generalization bound using the number of steps.
- require additional analysis: margin

Margin bound

• Decision tree of fixed depth: \mathcal{H} has finite VC-dimension d_{VC} , then

training error $\leq 2 \times$ margin error + complexity

$$\mathbf{E}_{X,Y}I(\bar{f}_J(X)Y \le 0) \le \underbrace{\frac{2}{n}\sum_{i=1}^n I(\hat{f}_m(X_i)Y_i \le \gamma \sum_{j=1}^J w_j)}_{\to 0 \text{ when } J \to \infty} + \underbrace{\frac{C}{n}(\gamma^{-2}d_{VC} - \ln(\eta))}_{\text{independent of } J}.$$

- Explains why AdaBoost can keep improving even when classification error becomes zero
 - margin error decreases

Margin analysis and 1-norm regularization

- Margin analysis is a special case of general 1-norm regularization
- Let ϕ be a smooth loss.
- Given 1-norm constraint $\sum_j w_j \leq A$:

$$\mathbf{E}_{X,Y}\phi(\bar{f}_J(X),Y) \le \frac{1}{n} \sum_{i=1}^n \phi(\bar{f}_J(X_i),Y_i) + C_\phi \sqrt{\frac{1}{n} (A^2 d_{VC} - \ln(\eta))}.$$

Complexity measured by A, not number of steps J.

Summary of Generalization Analysis

- Estimate generalization of boosting: using the following complexity control
 - L_1 : 1-norm of the weights w_j are bounded.
 - L_0 : number of boosting steps (sparse representation).
- Which complexity control is better?
 - sparsity is more fundamental but both views are useful.
 - can be more refined analysis in between.
- In more general boosting methods:
 - complexity can be controlled either by L_1 (1-norm) or L_0 (sparsity).

Issues corresponding to the weak learner view

- Weak learner: this is only an assumption, how can we prove it exists.
 - what is a weak learner anyway: why boosted tree works, and boosted SVM does not.
- Overfitting: driving error to zero can overfit the data (for non-separable problems)
- AdaBoost does not maximize margin.
- Adaptive resampling: why this specific form.
- Can we generalize adaptive resampling idea to regression and complex loss functions?

From adaptive resampling to greedy boosting

- Weak learner: picks f_j from a hypothesis space H_j to minimize certain error criterion.
- Goal: find $w_j \ge 0$ and $f_j \in \mathcal{H}_j$ to minimize loss

$$[\{\hat{w}_j, \hat{f}_j\}] = \arg\min_{\{w_j \ge 0, f_j \in \mathcal{H}_j\}} \sum_{i=1}^n \phi\left(\sum_j w_j f_j(X_i), Y_i\right). \quad (*)$$

- Idea: greedy optimization.
 - at stage *j*: fix (w_k, f_k) (k < j), find (w_j, f_j) to minimize the loss (*).

AdaBoost as greedy boosting

- Loss $\phi(f, y) = \exp(-fy)$.
- Goal: using greedy boosting to minimize

$$[\{\hat{w}_j, \hat{f}_j\}] = \arg\min_{\{w_j \ge 0, f_j \in \mathcal{H}_j\}} \sum_{i=1}^n e^{-\sum_j w_j f_j(X_i) Y_i}.$$

• At stage j, let $d_i \propto e^{-\sum_{k < j} \hat{w}_k \hat{f}_k(X_i) Y_i}$, and solve

$$[\hat{w}_j, \hat{f}_j] = \arg\min_{w_j \ge 0, f_j \in \mathcal{H}_j} \sum_{i=1}^n d_i e^{-w_j f_j(X_i) Y_i}.$$

- Let $\overline{f}(x) = \sum_k \hat{w}_k \hat{f}_k(x)$.
- Solution of \hat{w}_j with fixed \hat{f}_j :

 $D_{-1}(\hat{f}_j) = (1 - r_j)/2 = \sum_{i:\hat{f}_j(X_i)Y_i = -1} d_i$ (classification error):

$$\hat{w}_j = 0.5 \ln((1 - D_{-1})/D_{-1}), \quad \sum_{i=1}^n d_i e^{-\hat{w}_j \hat{f}_j(X_i)Y_i} = 2\sqrt{(1 - D_{-1})D_{-1}}$$

- Optimal \hat{f} : classifier minimizing error with reweighted samples d_i .
- Stage-wise exponential loss minimization (AdaBoost procedure):
 - choose $\hat{f}_j \in \mathcal{H}_j$ to minimize classification error
 - let $\hat{w}_j = 0.5 \ln((1 D_{-1})/D_{-1})$
 - exactly leads to the AdaBoost procedure.

General Loss Function

- Learn prediction function h(x): input x and output y
- By solving learning formulation

$$\hat{h} = \arg\min_{h \in H} R(h)$$

- R(h): complex loss function of the form

$$h = \frac{1}{n} \sum_{i=1}^{n} \phi_i(h(x_{i,1}), \cdots, h(x_{i,m_i}), y_i)$$

• Greedy algorithm: generalization of Adaboost

-
$$(s_k, g_k) = \arg \min_{g \in C, s \in R} R(h_k + sg)$$

- $h_{k+1} \leftarrow h_k + \tilde{s}_k g_k$ (\tilde{s}_k may not equal s_k)

Why boosted tree works

- Linear model of high order features
- Automatically handle heterogeneous features
 - create new (high order) features that are indicator functions.
- Automatically find high order interactive features
 - through tree splitting procedure.
 - a method to solve the problem of huge search space.
 - * assume good high order features depend on actively maintained set of (good) features constructed so far.
- Alternatives:

- discretize each feature into (possibly overlapping) buckets
- direct construction of feature combination.
- nonlinear functions like kernels or neural networks.
- general greedy feature learning by maintaining a set of features and adding new ones.

Greedy Boosting in Convex Hull

Solving the optimization problem: $\inf_{f \in CO(S)} A(f)$, where CO(S) is the convex hull of S.

The algorithm:

- Start with $f_0 \in S$.
- for k = 1, 2, ...
 - Find $\bar{g}_k \in S$ and $0 \leq \bar{\alpha}_k \leq 1$ to approximately minimize the function: $(\alpha_k, g_k) \rightarrow A((1 - \alpha_k)f_{k-1} + \alpha_k g_k)$ (*) - Let $f_k = (1 - \bar{\alpha}_k)f_{k-1} + \bar{\alpha}_k \bar{g}_k$.

(*) step (weak-learning): $A((1-\bar{\alpha}_k)f_{k-1}+\bar{\alpha}_k\bar{g}_k) \leq \inf_{g,\alpha} A((1-\alpha)f_{k-1}+\alpha g).$

One-step analysis

• Goal: obtain upper bound of

$$A^{+}(v) = \inf_{\eta \in [0,1], u \in S} A((1-\eta)v + \eta u).$$

- Averaging technique:
 - Consider an arbitrary $w = \sum_{i=1}^{m} \alpha_i u_i \in CO(S)$ * $\alpha_i \ge 0$ and $\sum_{i=1}^{m} \alpha_i = 1, u_i \in S$.
 - Design the following rule parameterized by $\eta \in [0, 1]$:

$$B(\eta) = \sum_{i=1}^{m} \alpha_i A((1-\eta)v + \eta u_i).$$

• Observe: $A^+(v) \leq \inf_{v,\eta} B(\eta)$

Intuition

Given $w = \sum_{i=1}^{m} \alpha_i u_i \in CO(S)$. First order approximation:

$$\begin{aligned} A^{+}(v) \leq & B(\eta) \\ &= \sum_{i=1}^{m} \alpha_{i} A((1-\eta)v + \eta u_{i}) \\ &= \sum_{i=1}^{m} \alpha_{i} [A(v) - \eta \nabla A(v)^{T}(v - u_{i})] + O(\eta^{2}) \\ &= & A(v) - \eta \nabla A(v)^{T}(v - w) + O(\eta^{2}) \\ &= & A(v) - \eta (A(v) - A(w)) + O(\eta^{2}). \end{aligned}$$

Some Observations

• Minimize r.h.s over $w \in CO(S)$:

$$A^+(v) \le A(v) - \eta(A(v) - \inf_{w \in \mathsf{CO}(S)} A(w)) + O(\eta^2).$$

More precise derivation

- Some technical tools
 - Convexity property: $A(w) A(v) \nabla A(v)^T (w v) \ge 0$.
 - Taylor expansion: $A((1-\eta)v + \eta v') A(v) \le \eta (v'-v)^T \nabla A(v) + \frac{\eta^2}{2}M.$
- Assumption: $M = \sup_{v \in CO(S), u \in S, \theta \in (0,1)} \frac{d^2}{d\theta^2} A(v + \theta(u v)) < +\infty.$

$$B(\eta) \leq A(v) - \eta \nabla A(v)^T (v - w) + \frac{\eta^2}{2} M$$
$$\leq A(v) - \eta (A(v) - A(w)) + \frac{\eta^2}{2} M.$$

Optimize the one-step convergence bound

 $\forall w \in \operatorname{CO}(S) \text{ and } \eta \in [0,1]$:

$$A(f_{k+1}) - A(w) \le A(f_k) - A(w) - \eta(A(f_k) - A(w)) + \frac{\eta^2}{2}M.$$

Let
$$A(w) \to \inf_{w \in CO(S)} A(w)$$
, and define

$$\rho(v) = A(v) - \inf_{w \in CO(S)} A(w).$$

Optimize over $\eta \in [0, 1]$:

$$ho(f_{k+1}) \leq egin{cases}
ho(f_k) - rac{
ho(f_k)^2}{2M} & ext{if }
ho(f_k) \leq M, \ rac{M}{2} & ext{otherwise.} \end{cases}$$

Convergence rate

- Recursion of $b(k) = \rho(f_k)$: $b(k+1) \leq b(k) b(k)^2/(2M)$.
- Asymptotic expression:
 - $b'(k) \approx -b(k)^2/(2M)$
 - $1/b(k) \approx k/(2M) + c_0$
- The solution:
 - Plug-in the asymptotic form, and use induction.
 - After one-step: $A(f_1) \leq M/2$.
 - After $k \ge 1$ step:

 $A(f_k) \le 2M/(k+3).$

References

AdaBoost

Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. *J. Comput. Syst. Sci.*, 55(1):119–139, 1997.

• Convex hull boosting analysis:

T. Zhang. Sequential greedy approximation for certain convex optimization problems. *IEEE Transaction on Information Theory*, 49:682–691, 2003.

• Greedy boosting:

T. Zhang and B. Yu. Boosting with early stopping: Convergence and consistency. *The Annals of Statistics*, 33:1538–1579, 2005.